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Abstract Sexual selection models suggest that female
choice is based on male traits that indicate their genetic
or environmental condition, consequently enhancing her
reproductive success by direct or indirect benefits. We
investigated the relationship between male foot colour
and offspring condition in the blue-footed booby, a so-
cially monogamous seabird, with conspicuous and variably
condition-dependent coloured feet that are selected by fe-
males. In a cross-fostering experiment, we found that chick
condition was related to the foot colour of the foster father
and, to some extent, to the foot colour of the genetic father;
thus overall, the father’s sexual ornamentation (genetic and
foster) explained 32% of variance of chick condition. These
data suggest that foot colour, a dynamic sexually selected
trait, is mostly a signal of parental contribution. In species
in which males provide parental care, females may choose
mates with higher parental ability. Overall, our data suggest
that colourful integuments are honest signals of parental
ability.
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Introduction

Female choice has been considered one of the major
evolutionary forces responsible for the elaborate ornaments
typically exhibited by males (see review in Andersson
1994). Males with elaborate traits can gain a mating ad-
vantage. In this context, bright colours in birds have been
proposed as the standard example of female choice leading
to the exaggeration of ordinary traits (e.g. Andersson 1994;
Møller and Birkhead 1994; Smiseth et al. 2001). In recent
decades, the benefits gained by females paired with males
with conspicuous colours have been the subject of an in-
tense controversy and the focus of research. Overall, female
preference should favour sexual displays that are closely
linked to individual condition (Kodric-Brown and Brown
1984). Condition-dependent models suggest that females
paired with colourful males may enhance the viability of
their offspring when selected colours indicate male genetic
quality (Grafen 1990; Hamilton and Zuk 1982; Kodric-
Brown and Brown 1984; Zahavi 1975), or direct benefits
(Kirkpatrick and Ryan 1991; Price et al. 1993), when the
male colour indicates the capacity to acquire nuptial gifts,
a good territory or resources for offspring. One of the key
predictions of sexual condition dependence is that females
paired with attractive males enhance offspring fitness due
to the genetic or environmental quality of attractive mates.

In many bird species, males provide substantial amounts
of care, and direct fitness benefits derived from male
contribution might be more important than indirect
benefits (Griffith et al. 1999; Kirkpatrick and Barton 1997;
Palokangas et al. 1994; but see Møller and Jennions 2001).
The good parent hypothesis suggests that female choice
is based in male traits that indicate their ability to acquire
nutrients and perform better parental duties, consequently
enhancing her reproductive success (Heywood 1989;
Hoelzer 1989; Kirkpatrick 1985; Price et al. 1993). The
good parent hypothesis is expected in socially monoga-
mous species in which mating opportunities are few, and
males in good condition may gain a greater increase in
fitness by allocating resources into parental care than by
attracting more potential mates (Kokko 1998; Massaro
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et al. 2003). The main source of support of the good parent
hypothesis arises from studies that found an association
between male ornamentation and male feeding rates (Grant
and Grant 1987; Hill 1991; Linville et al. 1998; Norris
1990; Palokangas et al. 1994; Saetre et al. 1995; Wiehn
1997) or the proportion of feedings contributed by males
(Voltura et al. 2002), but failed to quantify the quality of the
food items (Saetre et al. 1995; Sundberg and Larsson 1994),
and to differentiate environmental and genetic factors
(Senar et al. 2002). The main prediction of the good parent
hypothesis is that the offspring fitness is more dependent
on the environmental (which includes direct parental
effects) than on the genetic father’s condition displayed by
sexual ornaments (Møller and Thornhill 1998).

The blue-footed booby (Sula nebouxii), a socially
monogamous seabird, is a good model to investigate the
role of male ornaments as indicators of male parental
ability. Males have conspicuous and variably coloured
feet that are exhibited prominently during pair courtship
(Nelson 1978). During courtship, males (especially) land
in the territory with spread feet held flung up and in front of
the underparts, producing a conspicuous contrast between
the colour of the foot-web and the white underparts (salute-
landing; Nelson 1978). The sexual advertising display is
frequently preceded or followed by a parade, consisting of
an exaggerated foot-raising, flaunting the webs upwards
and outwards. A recent experimental study showed that
the foot colour of males is a condition-dependent sexual
selected trait that influences female motivation to court
and the probability of pair copulations (Torres and Velando
2003). Particularly in long-lived birds, such as the blue
footed-booby, females should optimise their reproductive
decisions in relation to the partner quality and his level
of investment (Chase 1980; Houston and Davies 1985;
Winkler 1987). In this species, males provide a great
amount of parental care (Anderson and Ricklefs 1992;
Guerra and Drummond 1995) and their contribution
influences offspring condition and the investment by
females (Velando and Alonso-Alvarez 2003).

Here, we used a cross-fostering experiment to examine
the relative roles of genetic versus environmental parental
effects on the condition of blue-footed booby chicks. If
parental quality is related to foot coloration, we predict that
foot colour should be positively correlated to chick condi-
tion; the importance of environmental or genetic parental
quality may be separated from the cross-fostering experi-
ment. In the blue-footed booby, male investment is espe-
cially important in the first 2 weeks of the chick’s life, and
after that, the contribution of the male decreases progres-
sively as chicks get older, in comparison to the female con-
tribution (Guerra and Drummond 1995). Thus, we tested
the above prediction using chick condition at 15 days of
age.

Methods

The study was carried out in the blue-footed booby colony
at Isla Isabel, Nayarit, México from February to April 2002.

A total of 70 clutches of 2 eggs were marked and monitored
daily near hatching. Egg length (L) and breadth (B) were
measured (to the nearest 0.01 mm), and egg volume (V)
was then calculated with the formula V=0.51LB2 (Hoyt
1979). We performed a cross-fostering experiment to iso-
late the effects on offspring condition of the genetic father
from effects of the foster father operating during the rearing
period. In our study, genetic effects are indistinguishable
from pre-manipulation maternal effects. Nests where only
one chick hatched were included in the experiment. Each
experimental nest was paired with another according to
hatching date (the maximum difference was 1 day). Chicks
were individually marked on the bill with waterproof mark-
ers, and then swapped between paired nests within 1 day
of hatching (n=44). For the experiment, we preferably se-
lected nests with one newborn and one unfertile egg or one
egg that contained a dead embryo, determined by hand ex-
amination. In seven cases, the second egg was removed and
placed in a newborn one-chick nest with similar chronol-
ogy in the surroundings. As a result of this design, all nests
remained with the original chronology and breeding effort
of adults. At the age of 15 days, chicks’ body mass (to
the nearest gramme) and ulna length (to the nearest mil-
limetre) were recorded. In addition, we measured T-cell-
mediated immunocompetence (CMI) of chicks through the
phytohaemagglutinin (PHA) skin-testing technique (Smits
et al. 1999). We studied the response to an injection of
0.2 mg PHA in 0.1 ml phosphate buffered saline (PBS)
in the left wing-web. The point of injection was marked
with an indelible marker. Three replicate measurements
of the patagium thickness were taken with a digital mi-
crometer (to the nearest 0.001 mm) prior to the injection,
and again 24 h later. Wing-web thickness measures were
significantly repeatable, both for initial measures (intra-
class correlation coefficient, r=0.93, P<0.001) and for fi-
nal measures (r=0.98, P<0.0001). The CMI was measured
as the change in thickness (mm) of the wing-web after 24-h
post-injection.

We captured the male and female parents of cross-
fostered nests when the chick was 15–17 days old. Chicks
and adults were captured early in the morning to avoid
heat stress and any variation related to circadian rhythms.
We recorded body mass (to the nearest 5 g) and ulna
length (to the nearest millimetre) of captured adult birds,
and two measures of colour of the right foot of males
using a colorimeter with CIELAB parameters (MINOLTA
CR-200). We used the L∗a∗b colour space, where L∗ indi-
cates brightness, and a∗ and b∗ indicate the chromaticity
co-ordinates. The saturation of the colour, given by the
co-ordinates a∗ and b∗, increases as a∗ and b∗ absolute
values increase. Foot-colour chromaticity varies from dark
blue (negative values of b∗ and low absolute values of a∗)
to a light blue-green (positive values of b∗ and negative
values of a∗). CIELAB parameters measure colour on the
range of reflectance visible to the human eye, and many
bird species have ultraviolet-sensitive retinal cones (e.g.
Bennett et al. 1996; Johnsen et al. 1998; Siitari et al. 2002).
However, it has been argued that quantifying coloration
exclusively by human-perceived colour can be reasonable
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for longer wavelengths (Andersson 1999; Zuk and De-
cruyenaere 1994). As an index of adult body condition, we
used the residuals from an ANCOVA analysis, with body
mass as dependent variable, sex as factor and ulna length as
covariate (R2=0.987, P<0.0001). Sample size was reduced
due to chick mortality during the nestling stage. We were
not able to capture adults in 3 nests, and thus, adult and
chick data were collected in 41 nests, and complete data
(including data of foster and genetic parents) were obtained
in 38 nests. The effect of chick size was standardised
by introducing ulna length into the regressions relating
foot colour to chick mass. We performed a backward
multiple regression model with all confounding variables
and the mean foot colour of genetic and foster parents;
variables were removed from the full model when the
variance explained did not significantly improve the model
(α=0.05).

Results

The body condition of foster and genetic parents was
not correlated (fathers: r=0.04, P>0.5; mothers r=0.06,
P>0.5). Foot brightness, but not foot chromaticity, of fos-
ter and genetic fathers were correlated (Brightness: r=0.42,
P<0.05; a∗: r=0.24, P>0.1; b∗: r=−0.04, P>0.5). Male
foot-colour variables were not correlated with egg volume
or hatching date (P>0.10 in all cases).

The chick mass at 15 days of age (controlled by ulna
length) was correlated with the foot colour of foster fathers
(Table 1); foster fathers with more green (a∗) and yel-
low (b∗) feet had chicks with better condition. In addition,
chick mass was also positively correlated with b∗ chroma
parameter of genetic fathers (Table 1). Furthermore, from
a multiple regression analysis, the b∗ parameter of the fos-
ter father was the colour variable with stronger correla-
tion with chick condition (Table 2; see also Fig. 1a). After
controlling for b∗ parameter of foster father and female
condition, the b∗ parameter of genetic fathers had a slight,
but significant, effect on chick condition at 15 days of age
(Fig. 1b).

No correlation was detected between CMI and foot colour
of genetic or foster fathers (P>0.10 in all cases), not
even after controlling by hatching date, egg size, chick
mass, chick ulna or body condition of genetic or fos-
ter parents, all variables that did not correlate with chick
CMI.

Table 1 Regressions between chick mass at 15 days of age and
foot colour parameter of foster and genetic fathers. Chick ulna was
included in the models (n=41 in all cases)

β t P Partial r

Foster father brightness 0.14 1.91 0.061 0.29
Foster father b* 0.20 2.81 0.008 0.41
Foster father a∗ −0.19 2.67 0.011 −0.39
Genetic father brightness 0.13 1.73 0.091 0.27
Genetic father b∗ 0.16 2.10 0.042 0.32
Genetic father a∗ −0.11 1.47 0.15 −0.23

Table 2 Backward multiple regression model of potential sources of
variation on chick mass at 15 days of age (n=38); minimal adequate
model, and variables included in the initial model

β t P Partial r

Variables in the model
Foster father b∗ 0.24 3.58 0.001 0.52
Genetic father b∗ 0.15 2.19 0.035 0.35
Foster mother

condition
0.13 1.88 0.069 0.30

Chick ulna length 0.87 12.88 <0.001 0.91
Variables not in the model

Foster father
brightness

–0.07 −0.79 0.44 −0.14

Foster father a∗ −0.01 0.06 0.95 −0.01
Foster father

condition
0.08 1.19 0.24 0.20

Genetic father
brightness

−0.02 0.21 0.83 0.04

Genetic father a∗ 0.05 0.58 0.57 0.10
Genetic father

condition
−0.11 1.7 0.10 −0.28

Genetic mother
condition

0.06 0.96 0.34 0.16

Egg volume 0.10 1.44 0.16 0.24
Hatching date 0.01 0.87 0.93 −0.01

Fig. 1 Relationship between chick mass at 15 days of age (stan-
dardised by ulna length) and b∗ parameter of foot colour of foster
father (a) and genetic father (b)
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Discussion

In our study, offspring condition correlated with both the
foster and the genetic father’s sexual ornamentation, which
explained 32% of variance on chick condition. In agree-
ment with key predictions of condition-dependent models
of sexual selection (Andersson 1994), blue-footed booby
females paired with colourful males improved their off-
spring condition. The multiple regression model indicated
that the correlation between male colour and chick condi-
tion was mostly due to parental effects (23% of variance),
although a small proportion was due to genetic effects (8%,
of variance, including maternal effects). In the blue-footed
booby, chick condition is highly dependent on male invest-
ment, especially in the first 2 weeks of chick life (Guerra
and Drummond 1995; Velando and Alonso-Alvarez 2003).
The blue hue of foster-father feet was the variable that bet-
ter indicated chick body condition at 15 days of age. This
was true even after controlling for the foster-mother con-
dition, an indicator of post-hatching maternal effects. The
conditions experienced during growth will probably af-
fect offspring survival and their reproductive performance
(Lindström 1999; Metcalfe and Monaghan 2001). Our re-
sults emphasise the importance of environmental sources
of variation, such as direct paternal effects on offspring fit-
ness, as other studies in blue-footed boobies have shown
(Drummond and Garcia Chavelas 1989; Drummond et al.
2003; Torres and Drummond 1997, 1999; Velando 2002;
Velando and Alonso-Alvarez 2003). Additionally, a previ-
ous experimental study showed that foot colour of male
boobies is a trait that affects female choice (Torres and
Velando 2003). Taken together, these results suggest that
females paired with attractive males may enhance offspring
condition, and hence their reproductive success, probably
as a result of post-hatching male contribution to parental
care (Heywood 1989; Hoelzer 1989). In addition, females
could also increase their post-hatching contribution when
paired with attractive males (see below).

The small, but significant, relationship between the foot
blue hue of genetic fathers and chick condition suggests
some influence of genetic factors expressed by foot col-
oration on chick condition. In cross-fostering experiments,
maternal or environmental effects acting prior to the manip-
ulation are indistinguishable from genetic effects (Merilä
1996; Mousseau and Fox 1998). Females could increase
their egg investment when offspring have better chances
of survival, as when they are paired with attractive males
(Burley 1986; Cunningham and Russell 2000; Sheldon
2000; but see Mazuc et al. 2003). Maternal effects on eggs
may be important; for instance, larger eggs provide greater
lipid and water resources (Kennamer et al. 1997; Williams
1994), and in some bird species, physiologically active
compounds, such as carotenoids, antibodies or hormones,
which enhance the chick condition or immune system, are
incorporated into eggs (Gil et al. 1999; Saino et al. 2002;
Schwabl 1997). In our study, no correlation was detected
between male foot colour and egg volume, a good indi-
cator of nutrient content (Williams 1994). Consequently,
on present evidence, the correlation between genetic-father

foot colour and chick condition cannot be attributed to a
greater overall provisioning of nutrients into eggs.

Unexpectedly, we found a correlation of foot brightness
between genetic and foster fathers. Adult males were paired
by date and they could indirectly be paired by condition if
male condition varies with breeding time; nevertheless, foot
colour and male condition did not correlate with hatching
date. Alternatively, foot brightness could be affected by
weather at a particular time. In any case, foot chromaticity
of foster and genetic fathers was not correlated, and thus
the relationship between the foot blue hue of genetic fathers
and chick condition was not due to the pairing method. Al-
though more studies are required to confirm this, male foot
chromaticity seems to indicate some heritable condition.

Few studies have considered the role in sexual selection
of colours in integuments such as wattles, caruncles, cul-
men or legs (e.g. Burley 1986; Mateos and Carranza 1995;
Torres and Velando 2003; Zuk et al. 1990, 1992), which
are particularly widespread in non-passerine birds (Prumm
and Torres 2003). In the blue-footed booby, male parental
care is dependent on their foraging ability and condition,
and influences the female contribution and chick condition
(Velando and Alonso-Alvarez 2003). The relationship be-
tween foot coloration of foster father and chick condition
suggests that foot colour is a reliable indicator of nutritional
condition of males. In many birds, plumage coloration de-
pends on the nutritional condition of the bearer at the time
feathers were grown (Hill 1991; Hill and Montgomerie
1994), and serves as an honest signal of provisioning and
parental ability (Hill 1991, 1999; Linville et al. 1998; Senar
et al. 2002). The information expressed by colourful integu-
ments displayed by many seabirds probably differs from
plumage colours, since pigments present in fleshy struc-
tures can be mobilised facultatively (Lozano 1994), may
reflect more recent physiological events, and have the po-
tential to indicate current physical condition (Faivre et al.
2003; Lozano 1994; Negro et al. 1998; Zuk et al. 1990).

In the blue-footed booby, foot colour is a dynamic
condition-dependent trait, whose expression changes
rapidly with nutritional state; in a food-controlled exper-
iment, there was a strong correlation between body-mass
loss and changes in foot brightness and hue (chroma param-
eters a∗ and b∗) (Torres and Velando 2003). Thus, attractive
males (Torres and Velando 2003) are the ones with good
nutritional condition. Future studies should evaluate the as-
sumption that male nutritional condition during courtship
(expressed by foot colour) and during chick growth covary.
Another factor that will provide a better insight into the role
of foot colour in the blue-footed booby is the understanding
of the proximal mechanisms of colour production.

The lack of relationship between foot coloration of foster
and genetic fathers with T-cell-mediated immune response
of chicks at 15 days of age stresses the low influence
of paternal effects (genetic and environmental) on early
chick immunocompetence. In early life stages, chicks
have a poor immunocompetence that is compensated
for by maternal immune factors contained in the eggs
(Apanius 1998; Lung et al. 1996). Other studies have
shown that T-cell proliferative response of chicks has a
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largely environmental component (Christe et al. 2000;
Saino et al. 1997; Sorci et al. 1997; Tella et al. 2000).
However, in blue-footed booby chicks at 15days of age,
the T-cell response was not affected by the chick-rearing
conditions. Further studies are needed to clarify the factors
governing early chick immunocompetence in this species.

In summary, we found that condition of blue-footed
booby chicks was related to foot colour of the foster fa-
ther and, to some extent, to foot colour of the genetic fa-
ther. The data suggest that foot colour, a dynamic sexually
selected trait, indicates paternal quality. Therefore, female
blue-footed boobies may assess and choose colourful males
due to their better parental abilities and probably better
genetic quality in order to produce heavier chicks. Blue-
footed boobies are socially monogamous, with low mating
opportunities (Osorio-Beristain and Drummond 1998) and,
in theory, males should enhance their reproductive success
by allocating resources into parental care rather than mate
attraction (Kokko 1998). Although complementary studies
are required to assess the exact role of potential maternal
effects, the results stress the importance of non-genetic ef-
fects indicated by condition-dependent sexual ornaments,
and more likely, the interaction between genetic and envi-
ronmental effects expressed by sexual traits in species with
parental care.
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